Marks of Divine Wisdom BSD 
 
» The Marks of Divine Wisdom
» Amazing Creatures
» More Amazing Creatures
» Yet more Amazing Creatures
» Amazing Plants
» Flying on Instruments
» Outboard Motor
» The Amazing Cell
» Nature's Game
» Horrendous Complexity
» The Humble Eyelid
» the Chessmaster
» the Origin of Life
» Search for Alien Life
» Elephant in the Room
» Greetings from The Cosmos
» The Atom
» Center of the Universe
» the Light is Good
» the Mask of Nature
» Divine wisdom vs Human Wisdom
» the Nature of Reality
» Mysterious World of PLants
» Almost a Miracle
» The Bite of Rationalism
» The March of Science
» Afterword
» Comments

 
 

Sfarim
[+ Font Size]  [- Font Size]      
<<Previous: the Nature of Reality

** Mysterious World of PLants **
Plants seem to be simple organisms. They don't have a brain. One could think they are quite simple. Yet here too, scientists are discovering new alien worlds of complexity.

The mystifying world of plants is rocking the scientific community and its core assumptions about life.

Virtually all scientists are locked into a "machine perspective", namely, that every complex system is a physical machine. Just like our own human inventions, whereby, one thing acts, which causes another thing to react, and so on, motorically, so too everything in nature including life works the same way.

But to think of a complex system which is not a machine is a very big paradigm shift for scientists. For the whole scientific world view is based on looking for physical causes to explain phenomena, i.e. causes which we can detect with our physical senses. Scientists hate things they cannot detect with their physical senses.

Plants are challenging this world view, indicating that there are higher order causal factors underlying living things which are beyond the physical.

Here is an excerpt of a fascinating article shedding light on this. It was written by Michael Pollan[1], a professor of Journalism at UC Berkeley, who holds numerous awards from scientific institutions for his reporting on science:
The sophisticated behaviors observed in plants cannot at present be completely explained by familiar genetic and biochemical mechanisms. Plants are able to sense and optimally respond to so many environmental variables-light, water, gravity, temperature, soil structure, nutrients, toxins, microbes, herbivores, chemical signals from other plants-that there may exist some brainlike information-processing system to integrate the data and coordinate a plant's behavioral response. The authors pointed out that electrical and chemical signalling systems have been identified in plants which are homologous to those found in the nervous systems of animals. They also noted that neurotransmitters such as serotonin, dopamine, and glutamate have been found in plants, though their role remains unclear.
...
Plants have evolved between fifteen and twenty distinct senses, including analogues of our five: smell and taste (they sense and respond to chemicals in the air or on their bodies); sight (they react differently to various wavelengths of light as well as to shadow); touch (a vine or a root "knows" when it encounters a solid object); and, it has been discovered, sound. In a recent experiment, Heidi Appel, a chemical ecologist at the University of Missouri, found that, when she played a recording of a caterpillar chomping a leaf for a plant that hadn't been touched, the sound primed the plant's genetic machinery to produce defense chemicals. Another experiment, done in Mancuso's lab and not yet published, found that plant roots would seek out a buried pipe through which water was flowing even if the exterior of the pipe was dry, which suggested that plants somehow "hear" the sound of flowing water...

Scientists have since found that the tips of plant roots, in addition to sensing gravity, moisture, light, pressure, and hardness, can also sense volume, nitrogen, phosphorus, salt, various toxins, microbes, and chemical signals from neighboring plants. Roots about to encounter an impenetrable obstacle or a toxic substance change course before they make contact with it. Roots can tell whether nearby roots are self or other and, if other, kin or stranger. Normally, plants compete for root space with strangers, but, when researchers put four closely related Great Lakes sea-rocket plants (Cakile edentula) in the same pot, the plants restrained their usual competitive behaviors and shared resources.

Somehow, a plant gathers and integrates all this information about its environment, and then "decides"-some scientists deploy the quotation marks, indicating metaphor at work; others drop them-in precisely what direction to deploy its roots or its leaves. Once the definition of "behavior" expands to include such things as a shift in the trajectory of a root, a reallocation of resources, or the emission of a powerful chemical, plants begin to look like much more active agents, responding to environmental cues in ways more subtle or adaptive than the word "instinct" would suggest. "Plants perceive competitors and grow away from them," Rick Karban, a plant ecologist at U.C. Davis, explained, when I asked him for an example of plant decision-making. "They are more leery of actual vegetation than they are of inanimate objects, and they respond to potential competitors before actually being shaded by them." These are sophisticated behaviors, but, like most plant behaviors, to an animal they're either invisible or really, really slow.

The sessile life style also helps account for plants' extraordinary gift for biochemistry, which far exceeds that of animals and, arguably, of human chemists. (Many drugs, from aspirin to opiates, derive from compounds designed by plants.) Unable to run away, plants deploy a complex molecular vocabulary to signal distress, deter or poison enemies, and recruit animals to perform various services for them. A recent study in Science found that the caffeine produced by many plants may function not only as a defense chemical, as had previously been thought, but in some cases as a psychoactive drug in their nectar. The caffeine encourages bees to remember a particular plant and return to it, making them more faithful and effective pollinators.

One of the most productive areas of plant research in recent years has been plant signalling. Since the early nineteen-eighties, it has been known that when a plant's leaves are infected or chewed by insects they emit volatile chemicals that signal other leaves to mount a defense. Sometimes this warning signal contains information about the identity of the insect, gleaned from the taste of its saliva. Depending on the plant and the attacker, the defense might involve altering the leaf's flavor or texture, or producing toxins or other compounds that render the plant's flesh less digestible to herbivores. When antelopes browse acacia trees, the leaves produce tannins that make them unappetizing and difficult to digest. When food is scarce and acacias are overbrowsed, it has been reported, the trees produce sufficient amounts of toxin to kill the animals.

Perhaps the cleverest instance of plant signalling involves two insect species, the first in the role of pest and the second as its exterminator. Several species, including corn and lima beans, emit a chemical distress call when attacked by caterpillars. Parasitic wasps some distance away lock in on that scent, follow it to the afflicted plant, and proceed to slowly destroy the caterpillars. Scientists call these insects "plant bodyguards."

Plants speak in a chemical vocabulary we can't directly perceive or comprehend. The first important discoveries in plant communication were made in the lab in the nineteen-eighties, by isolating plants and their chemical emissions in Plexiglas chambers, but Rick Karban, the U.C. Davis ecologist, and others have set themselves the messier task of studying how plants exchange chemical signals outdoors, in a natural setting...

Karban told me that, in the nineteen-eighties, people working on plant communication faced some of the same outrage that scientists working on plant intelligence (a term he cautiously accepts) do today. "This stuff has been enormously contentious," he says, referring to the early days of research into plant communication, work that is now generally accepted. "It took me years to get some of these papers published. People would literally be screaming at one another at scientific meetings." He added, "Plant scientists in general are incredibly conservative. We all think we want to hear novel ideas, but we don't, not really."

I first met Karban at a scientific meeting in Vancouver last July, when he presented a paper titled "Plant Communication and Kin Recognition in Sagebrush."
...
The most controversial presentation was "Animal-Like Learning in Mimosa Pudica,"... She focussed on an elementary type of learning called "habituation," in which an experimental subject is taught to ignore an irrelevant stimulus. "Habituation enables an organism to focus on the important information, while filtering out the rubbish," Gagliano explained to the audience of plant scientists. How long does it take the animal to recognize that a stimulus is "rubbish," and then how long will it remember what it has learned? Gagliano's experimental question was bracing: Could the same thing be done with a plant?

Mimosa pudica, also called the "sensitive plant," is that rare plant species with a behavior so speedy and visible that animals can observe it; the Venus flytrap is another. When the fernlike leaves of the mimosa are touched, they instantly fold up, presumably to frighten insects. The mimosa also collapses its leaves when the plant is dropped or jostled. Gagliano potted fifty-six mimosa plants and rigged a system to drop them from a height of fifteen centimetres every five seconds. Each "training session" involved sixty drops. She reported that some of the mimosas started to reopen their leaves after just four, five, or six drops, as if they had concluded that the stimulus could be safely ignored. "By the end, they were completely open," Gagliano said to the audience. "They couldn't care less anymore."

Was it just fatigue? Apparently not: when the plants were shaken, they again closed up. " 'Oh, this is something new,' " Gagliano said, imagining these events from the plants' point of view. "You see, you want to be attuned to something new coming in. Then we went back to the drops, and they didn't respond." Gagliano reported that she retested her plants after a week and found that they continued to disregard the drop stimulus, indicating that they "remembered" what they had learned. Even after twenty-eight days, the lesson had not been forgotten. She reminded her colleagues that, in similar experiments with bees, the insects forgot what they had learned after just forty-eight hours. Gagliano concluded by suggesting that "brains and neurons are a sophisticated solution but not a necessary requirement for learning," and that there is "some unifying mechanism across living systems that can process information and learn."

A lively exchange followed. Someone objected that dropping a plant was not a relevant trigger, since that doesn't happen in nature. Gagliano pointed out that electric shock, an equally artificial trigger, is often used in animal-learning experiments. Another scientist suggested that perhaps her plants were not habituated, just tuckered out. She argued that twenty-eight days would be plenty of time to rebuild their energy reserves.

On my way out of the lecture hall, I bumped into Fred Sack, a prominent botanist at the University of British Columbia. I asked him what he thought of Gagliano's presentation. "[expletive](nonsense)"," he replied. He explained that the word "learning" implied a brain and should be reserved for animals: "Animals can exhibit learning, but plants evolve adaptations." He was making a distinction between behavioral changes that occur within the lifetime of an organism and those which arise across generations. At lunch, I sat with a Russian scientist, who was equally dismissive. "It's not learning," he said. "So there's nothing to discuss."

Later that afternoon, Gagliano seemed both stung by some of the reactions to her presentation and defiant. Adaptation is far too slow a process to explain the behavior she had observed, she told me. "How can they be adapted to something they have never experienced in their real world?" She noted that some of her plants learned faster than others, evidence that "this is not an innate or programmed response." Many of the scientists in her audience were just getting used to the ideas of plant "behavior" and "memory" (terms that even Fred Sack said he was willing to accept); using words like "learning" and "intelligence" in plants struck them, in Sack's words, as "inappropriate" and "just weird." When I described the experiment to Lincoln Taiz, he suggested the words "habituation" or "desensitization" would be more appropriate than "learning." Gagliano said that her mimosa paper had been rejected by ten journals: "None of the reviewers had problems with the data." Instead, they balked at the language she used to describe the data. But she didn't want to change it. "Unless we use the same language to describe the same behavior"-exhibited by plants and animals-"we can't compare it," she said
....
Time-lapse photography is perhaps the best tool we have to bridge the chasm between the time scale at which plants live and our own. This example was of a young bean plant, shot in the lab over two days, one frame every ten minutes. A metal pole on a dolly stands a couple of feet away. The bean plant is "looking" for something to climb. Each spring, I witness the same process in my garden, in real time. I always assumed that the bean plants simply grow this way or that, until they eventually bump into something suitable to climb. But Mancuso's video seems to show that this bean plant "knows" exactly where the metal pole is long before it makes contact with it. Mancuso speculates that the plant could be employing a form of echolocation. There is some evidence that plants make low clicking sounds as their cells elongate; it's possible that they can sense the reflection of those sound waves bouncing off the metal pole.

The bean plant wastes no time or energy "looking"-that is, growing-anywhere but in the direction of the pole. And it is striving (there is no other word for it) to get there: reaching, stretching, throwing itself over and over like a fly rod, extending itself a few more inches with every cast, as it attempts to wrap its curling tip around the pole. As soon as contact is made, the plant appears to relax; its clenched leaves begin to flutter mildly. All this may be nothing more than an illusion of time-lapse photography. Yet to watch the video is to feel, momentarily, like one of the aliens in Mancuso's formative science-fiction story, shown a window onto a dimension of time in which these formerly inert beings come astonishingly to life, seemingly conscious individuals with intentions
...
In October, I loaded the bean video onto my laptop and drove down to Santa Cruz to play it for Lincoln Taiz. He began by questioning its value as scientific data: "Maybe he has ten other videos where the bean didn't do that. You can't take one interesting variation and generalize from it." The bean's behavior was, in other words, an anecdote, not a phenomenon. Taiz also pointed out that the bean in the video was leaning toward the pole in the first frame. Mancuso then sent me another video with two perfectly upright bean plants that exhibited very similar behavior. Taiz was now intrigued.
...
The most bracing part of Mancuso's talk on bioinspiration came when he discussed underground plant networks. Citing the research of Suzanne Simard, a forest ecologist at the University of British Columbia, and her colleagues, Mancuso showed a slide depicting how trees in a forest organize themselves into far-flung networks, using the underground web of mycorrhizal fungi which connects their roots to exchange information and even goods. This "wood-wide web," as the title of one paper put it, allows scores of trees in a forest to convey warnings of insect attacks, and also to deliver carbon, nitrogen, and water to trees in need.

When I reached Simard by phone, she described how she and her colleagues track the flow of nutrients and chemical signals through this invisible underground network. They injected fir trees with radioactive carbon isotopes, then followed the spread of the isotopes through the forest community using a variety of sensing methods, including a Geiger counter. Within a few days, stores of radioactive carbon had been routed from tree to tree. Every tree in a plot thirty metres square was connected to the network; the oldest trees functioned as hubs, some with as many as forty-seven connections. The diagram of the forest network resembled an airline route map.

The pattern of nutrient traffic showed how "mother trees" were using the network to nourish shaded seedlings, including their offspring-which the trees can apparently recognize as kin-until they're tall enough to reach the light. And, in a striking example of interspecies cooperation, Simard found that fir trees were using the fungal web to trade nutrients with paper-bark birch trees over the course of the season. The evergreen species will tide over the deciduous one when it has sugars to spare, and then call in the debt later in the season. For the forest community, the value of this cooperative underground economy appears to be better over-all health, more total photosynthesis, and greater resilience in the face of disturbance.

In his talk, Mancuso juxtaposed a slide of the nodes and links in one of these subterranean forest networks with a diagram of the Internet, and suggested that in some respects the former was superior. "Plants are able to create scalable networks of self-maintaining, self-operating, and self-repairing units," he said. "Plants."
(from www.newyorker.com/magazine/2013/12/23/the-intelligent-plant see there for much more)


>> Next: Almost a Miracle

Footnotes